Up: [[공학수학1,engineering_mathematics_1]] and [[수학,math]] [[모형,model]] = [[모델,model]] == 개체군동태,population_dynamics == P(t): the total population at time t $\frac{dP}{dt}\propto P$ == 방사성붕괴,radioactive_decay == A(t): amount of substance remaining at time t $\frac{dA}{dt}\propto A$ ---- 물질의 연대 측정법: 방사성 물질의 시간 t에서의 붕괴율(dy/dt)은 시간 t에서의 현존량(y)에 비례 $\frac{dy}{dt}=ky$ ex. 현재 Ra 100 mg 이 있다. t시간 이후 양은? 위 식을 변형하면 $\frac{dy}{ky}=dt$ $\frac{dy}{y}=kdt$ $\ln|y|=kt+C_1$ $y=e^{kt+C_1}=C_2e^{kt}$ $t=0,y=100,y=100e^{kt}$ == Newton's law of cooling/warming == 뉴턴_냉각법칙 ''T''(t): the temperature of a body at time t ''T'',,m,,: the temperature of surrounding medium $\frac{dT}{dt}\propto T-T_m$ or ${dT\over dt}=k(T-T_m)$ == spreading of disease == x(t): the number of people who have contacted the disease at time t y(t): the number of people who have not yet been exposed to the disease at time t assumption: the number of interactions is jointly proportional to x(t) and y(t) $\frac{dx}{dt}\propto xy$ or $\frac{dx}{dt}=kxy$ == chemical reactions (이하 수업에서 다루지는 않음) == $\frac{dX}{dt}=k(\alpha-X)(\beta-X)$ == mixture == (input rate of salt) - (output rate of salt) = R,,in,, - R,,out,, [[혼합물,mixture]] == draining a tank == $\frac{dh}{dt}=-\frac{A_h}{A_w}\sqrt{2gh}$ == series circuit == $L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac1Cq=E(t)$ == falling bodies == $\frac{d^2s}{dt^2}=-g$ == falling bodies and air resistance == $m\frac{dv}{dt}=mg-kv^2$ $m\frac{d^2s}{dt^2}+k\left(\frac{ds}{dt}\right)^2=mg$ == a slipping chain == $\frac{d^2x}{dt^2}-\frac{64}Lx=0$ == suspended cables == $\frac{dy}{dx}=\frac{W}{T_1}$