Sub: [[이산확률변수,discrete_RV]] [[연속확률변수,continuous_RV]] = Definition of RV = A RV $X$ is a real-valued function of the experimental outcome. $X:\mathbb{\Omega}\to\mathbb{R}$ 여기서 $\mathbb{\Omega}$ = [[VG:표본공간,sample_space]] = Discrete RV (DRV) = A RV $X$ is discrete if its range is finite or countably infinite. 여기서, range $r(X)=\left{x\middle|\exists\omega\in\mathbb{\Omega}\textrm{ such that }X(\omega)=x\right}$ 즉 sample $\omega$ 를 $x$ 라는 값으로 대응시키는? 그런 함수가 $X$ 이고 그것을 독립변수(or 정의역)로 하는 대응관계가 range r? 조건제시법 이해가 잘... ex. two fair coin tosses X = # of heads Ω = {HH, HT, TH, TT} X(HH) = 2 X(TT) = 0 r(X) = {0, 1, 2} ex. sampling a number ω from [-1,1] $X(\omega)=\begin{cases}1,&\textrm{ if }\omega>0\\0,&\textrm{ if }\omega=0\\-1,&\textrm{ if }\omega<0\end{cases}$ 페이지: [[이산확률변수,discrete_RV]] = Probability mass function (PMF) = The PMF $p_X(x)$ of a DRV $X$ is defined as: $p_X(x)=P(X=x)=P\left(\left{\omega\in\mathbb{\Omega}\middle|X(\omega)=x\right}\right)$ 위의 동전던지기를 예로 들면 $p_X(x)=$ ¼ if x=0 TT ½ if x=1 HT TH ¼ if x=2 HH = Mean or expectation = 평균 or 기대값 $E[X]=\sum_x x\cdot P_X(x)$ 위 동전던지기를 예로 들면 앞면이 나오는 횟수의 기대값은 E[X]= 0·¼ + 1·½ + 2·¼ = 1 = Variance = 분산 $V[X]=E[(X-E[X])^2]=\sum_x(x-E[X])^2P_X(x)$ Properties 특징 i) $E[aX+b]=aE[X]+b$ ii) ${\rm Var}[aX+b]=a^2{\rm Var}(X)$ = Conditioning RV on event = Given an event $A$ with $P(A)>0,$ the conditional PMF $P_{X|A}$ of a DRV $X$ is defined as $P_{X|A}(x)=P(X=x|A)=\frac{P(\left{X=x\right}\cap A)}{P(A)}$ Conditioning X on Y: $P_{X|Y}(x|y)=P(X=x|Y=y)$ $=\frac{P(X=x,Y=y)}{P(Y=y)}$ $=\frac{P_{X,Y}(x,y)}{P_Y(y)}$ $=P(\{X=x\}\cap\{Y=y\})$ $=P(\{\omega\in\mathbb{\Omega}|X(\omega)=x\textrm{ and }Y(\omega)=y\})$ = Conditional expectation = $E[X|A]=\sum_x x\cdot P_{X|A}(x)$ = Joint PMF of two DRVs = X, Y: DRVs $P_{X,Y}(x,y)=P(X=x,Y=y)$ = Independence = Two DRVs $X$ and $Y$ are independent if $P_{X,Y}(x,y)=P_X(x)P_Y(y)\;\;\;\forall x,y$ = Continuous RV (CRV) = A RV $X$ is continuous if there exists a non-negative function $f_X()$ such that $P(X\in B)=\int_B f_X(x)dx,\;\;\forall B\subset\mathbb{R}$ interval B가 $B=[a,b]$ 라면 $P(a\le X\le b)=\int_a^b f_X(x)dx$ 페이지: [[연속확률변수,continuous_RV]] = DRV and CRV = || || DRV || CRV || ||PF || PMF [[br]] $P_X(x)=P(X=x)$ || PDF [[br]] $f_X(x),P(X\in B)=\int_B f_X(x)dx$ || ||DF || CDF [[br]] $F_X(k)=P(X\le k)=\sum_{x\le k} P_X(x)$ || CDF [[br]] $F_X(x)=P(X\le x)=\int_{-\infty}^x f_X(t)dt$ || ||Mean || $E[X]=\sum_x xP_X(x)$ || $E[X]=\int_{-\infty}^{\infty} xf_X(x)dx$ || ||Var || $V(X)=\sum(x-E[X])^2P_X(x)$ || $V(X)=\int_{-\infty}^{\infty}(x-E[X])^2dx$ || = 독립 and Joint = discrete에 independence가 있다면 continuous에 joint가 있다? raised comma=⸴ ||Independence ||P,,X⸴Y,,(x,y)=P,,X,,(x)·P,,Y,,(y) ||f,,X⸴Y,,(x,y)=f,,X,,(x)·f,,Y,,(y), ∀x,y || ||Conditioning ||P,,X|Y,,(x|y)=P,,X⸴Y,,(x,y) / P,,Y,,(y) ||f,,X|Y,,(x|y)=f,,X⸴Y,,(x,y) / f,,Y,,(y) || (from [[http://kocw.net/home/search/kemView.do?kemId=991018 건대강의]]) ---- Up: [[확률및랜덤프로세스,probability_and_random_process]]