스피너,spinor 설명 video에서,
SO(n) - https://youtu.be/b7OIbMCIfs4?t=1371 .... the algebra of 회전,rotations. // rel 직교군,orthogonal_group
SU(n) - https://youtu.be/b7OIbMCIfs4?t=2028 // rel unitary_group
{
SU(2) is complex generalization of SO(2).
}
SO(n) - https://youtu.be/b7OIbMCIfs4?t=1371 .... the algebra of 회전,rotations. // rel 직교군,orthogonal_group
SU(n) - https://youtu.be/b7OIbMCIfs4?t=2028 // rel unitary_group
{
SU(2) is complex generalization of SO(2).
SO(2) | SU(2) |
$\displaystyle R=\begin{bmatrix}a&-b\\b&a\end{bmatrix}$ | $\displaystyle U=\begin{bmatrix}\alpha&-\beta^*\\\beta&\alpha^*\end{bmatrix}$ |
$\displaystyle a,b\in\mathbb{R},\; a^2+b^2=1$ | $\displaystyle \alpha,\beta\in\mathbb{C},\; |\alpha|^2 + |\beta|^2 = 1$ |
$\displaystyle \det R = 1$ (special) | $\displaystyle \det U = 1$ (special) |
$\displaystyle R^{-1} = R^T$ (orthogonal) | $\displaystyle U^{-1} = U^{\dagger}$ (unitary) |
Sub:
호모토피군,homotopy_group - 호모토피,homotopy
몫군,quotient_group - 몫,quotient
로런츠_군,Lorentz_group
직교군,orthogonal_group
호모토피군,homotopy_group - 호모토피,homotopy
몫군,quotient_group - 몫,quotient
로런츠_군,Lorentz_group
직교군,orthogonal_group
Contents
- 1. Sub
- 1.1. trivial group / zero group
- 1.2. additive group
- 1.3. multiplicative group 곱셈군
- 1.4. Lie group 리 군
- 1.5. 가환군 commutative grup = 아벨 군 abelian group
- 1.6. ADDHERE new group
- 1.7. ADDHERE new group
- 1.8. ADDHERE new group
- 1.9. ADDHERE new group
- 1.10. ADDHERE new group
- 1.11. ADDHERE new group
- 1.12. ADDHERE new group
- 1.13. ADDHERE new group
- 1.14. ADDHERE new group
- 2. MKL
1.1. trivial group / zero group ¶
trivial_group = zero_group (we)
trivial_group 의 한 예가 zero_group (MW)
https://mathworld.wolfram.com/TrivialGroup.html
https://mathworld.wolfram.com/ZeroGroup.html
https://en.wikipedia.org/wiki/Trivial_group
Up: 영,zero
trivial_group 의 한 예가 zero_group (MW)
https://mathworld.wolfram.com/TrivialGroup.html
https://mathworld.wolfram.com/ZeroGroup.html
https://en.wikipedia.org/wiki/Trivial_group
Up: 영,zero
1.3. multiplicative group 곱셈군 ¶
곱셈군
multiplicative group
곱셈군,multiplicative_group — curr at 프로덕트,product?action=highlight&value=multiplicative_group
multiplicative group
곱셈군,multiplicative_group — curr at 프로덕트,product?action=highlight&value=multiplicative_group
1.4. Lie group 리 군 ¶
리_군,Lie_group =리_군,Lie_group =,Lie_group . 리_군 Lie_group
Lie group
리 군
리 군
Lie_group = https://en.wiktionary.org/wiki/Lie_group
{
Up(Hyper):
topological_group ... topological_group = http://en.wiktionary.org/wiki/topological_group
{
Up(Hyper):
topological_group ... topological_group = http://en.wiktionary.org/wiki/topological_group
Sub(Hypo):
circle_group ... circle_group = http://en.wiktionary.org/wiki/circle_group
Moebius_group ... Moebius_group = http://en.wiktionary.org/wiki/Moebius_group
}
circle_group ... circle_group = http://en.wiktionary.org/wiki/circle_group
Moebius_group ... Moebius_group = http://en.wiktionary.org/wiki/Moebius_group
}
https://mathworld.wolfram.com/LieGroup.html
https://mathworld.wolfram.com/Lie-TypeGroup.html
리 군 = https://namu.wiki/w/리 군
수학백과: 리 군
https://mathworld.wolfram.com/Lie-TypeGroup.html
리 군 = https://namu.wiki/w/리 군
수학백과: 리 군
https://encyclopediaofmath.org/wiki/Lie_group
/// cf.
{
https://encyclopediaofmath.org/wiki/Lie_group,_local - local analytic group // analytic_group
https://encyclopediaofmath.org/wiki/Lie_transformation_group
https://encyclopediaofmath.org/wiki/Lie_group,_p-adic
https://encyclopediaofmath.org/wiki/Lie_group,_semi-simple
https://encyclopediaofmath.org/wiki/Lie_group,_compact
}
/// cf.
{
https://encyclopediaofmath.org/wiki/Lie_group,_local - local analytic group // analytic_group
https://encyclopediaofmath.org/wiki/Lie_transformation_group
https://encyclopediaofmath.org/wiki/Lie_group,_p-adic
https://encyclopediaofmath.org/wiki/Lie_group,_semi-simple
https://encyclopediaofmath.org/wiki/Lie_group,_compact
}
Up: 군,group
2. MKL ¶
마그마,magma
그루포이드,groupoid - curr at 마그마,magma
모노이드,monoid
환,ring
체,field
module ( 가군,module 모듈,module ) - curr at 추상대수,abstract_algebra 에서 algebraic_structure 편집중인 곳
그루포이드,groupoid - curr at 마그마,magma
모노이드,monoid
환,ring
체,field
module ( 가군,module 모듈,module ) - curr at 추상대수,abstract_algebra 에서 algebraic_structure 편집중인 곳