Difference between r1.1 and the current
@@ -1,11 +1,21 @@
#noindex
##===리듀스,Reduce =,Reduce 리듀스 Reduce
[[computer_algebra_system]], [[Portable_Standard_Lisp,PSL]]로 씌어짐.
상용이었으나 2008년 무료화 및 오픈소스 공개. BSD_license.
By https://en.wikipedia.org/wiki/Anthony_C._Hearn
tmp from https://cafe.naver.com/kpope/1354
{
편미분하기
##===리듀스,Reduce =,Reduce 리듀스 Reduce
[[맵,map]] vs. [[리듀스,reduce]] 할 때 그거
{
}
이하 CAS얘기
----
http://www.reduce-algebra.com/[[computer_algebra_system]], [[Portable_Standard_Lisp,PSL]]로 씌어짐.
상용이었으나 2008년 무료화 및 오픈소스 공개. BSD_license.
By https://en.wikipedia.org/wiki/Anthony_C._Hearn
[[행렬,matrix]] : `mat()`
[[리스트,list]] : `{...}` empty_list : `{}`
via manual ch4 lists
{
편미분하기
}
이하 CAS얘기
이하 CAS얘기
computer_algebra_system, Portable_Standard_Lisp,PSL로 씌어짐.
상용이었으나 2008년 무료화 및 오픈소스 공개. BSD_license.
By https://en.wikipedia.org/wiki/Anthony_C._Hearn
상용이었으나 2008년 무료화 및 오픈소스 공개. BSD_license.
By https://en.wikipedia.org/wiki/Anthony_C._Hearn
행렬,matrix :
리스트,list :
{
편미분하기
df(x^2 + y^2 + z^2, x);
2*x
mat()
리스트,list :
{...}
empty_list : {}
via manual ch4 lists
tmp from https://cafe.naver.com/kpope/1354{
편미분하기
df(x^2 + y^2 + z^2, x);
2*x
df is the REDUCE operator to compute the derivative. In
the partial derivative of f with respect to b. Note that the x dependence of f should be declared in adavance.
If it is not the case, then REDUCE assumes that f is independent of x and gives 0.
df(f,x),
the operator df is to computethe partial derivative of f with respect to b. Note that the x dependence of f should be declared in adavance.
If it is not the case, then REDUCE assumes that f is independent of x and gives 0.
The application of nested df operators realizes the computation of multiple derivatives.
the second-order derivative $\displaystyle \frac{\partial^2 f}{\partial y\partial x}.$
df(df(f,x),y)
computesthe second-order derivative $\displaystyle \frac{\partial^2 f}{\partial y\partial x}.$
depend x,v,t;
states that x is a function of v and t. This is to declare the implicit dependence of variables.
Because of this declaration,
df(x^2,t)
is not 0 but $\displaystyle 2x\frac{dx}{dt}.$ Here, df(x,t) is not explicitly computed but the evaluation is delayed.
If you understand what the following is, then I hope you to explain what it is below!
Note that
}
Note that
df(x,t,2)=
$\displaystyle \frac{d^2x}{dt^2}$ is the second-order time derivative of x.}
Twins:
리듀스_(컴퓨터_대수학_시스템)
= https://ko.wikipedia.org/wiki/리듀스_(컴퓨터_대수학_시스템)
Reduce_(computer_algebra_system)
= https://en.wikipedia.org/wiki/Reduce_(computer_algebra_system)
리듀스_(컴퓨터_대수학_시스템)
= https://ko.wikipedia.org/wiki/리듀스_(컴퓨터_대수학_시스템)
Reduce_(computer_algebra_system)
= https://en.wikipedia.org/wiki/Reduce_(computer_algebra_system)