애플리케이션
application 의 다른 번역은 응용,application 등등..
alternative pagename : function_application ? =,function_application . function_application function_application
함수적용,function_application - w
{
function application
function_application x 2024-02-10
} // function application function application function application
Sub:{
function application
function_application x 2024-02-10
} // function application function application function application
iterated_application =,iterated_application . iterated_application ?
application_iteration =,application_iteration . application_iteration ?
{
iteration of application
적용반복? 반복적용?
application_iteration =,application_iteration . application_iteration ?
{
iteration of application
적용반복? 반복적용?
iterated application
반복적용 ?
반복적용 ?
from (Barendregt 2000 p8)
{
마지막 식을 보면 iterated application에는 association to the left(왼쪽 결합,association.. curr at 연관,association... pagename 왼쪽결합,left_association?)을 쓰는 것이 편리함을 보여준다:
쌍대적으로Dually, iterated abstraction
는 association to the right를 쓴다 // 오른쪽결합,right_association?
{
"Functions of several arguments can be obtained by iteration of application.두변수함수 f가 있고 f(x,y)가 두 아규먼트,argument에 의존할 때 Fx와 F를 정의해보자
The idea is due to Moses_Schoenfinkel (1924) but is often called currying, after Haskell_Curry who introduced it independently." // 커링,currying
Fx = λ y . f(x,y)
F = λ x . Fx
그러면F = λ x . Fx
(F x)y = Fx y = f(x, y)
// iterated_application =,iterated_application . iterated_application마지막 식을 보면 iterated application에는 association to the left(왼쪽 결합,association.. curr at 연관,association... pagename 왼쪽결합,left_association?)을 쓰는 것이 편리함을 보여준다:
F M1 M2 … Mn
denotes
(…((F M1)M2)… Mn)
그러면 저 마지막 식은 이렇게 된다denotes
(…((F M1)M2)… Mn)
Fxy = f(x, y)
// iterated_abstraction =,iterated_abstraction . iterated_abstraction { 반복추상화 ?? iterated abstraction } // iterated abstraction iterated abstraction쌍대적으로Dually, iterated abstraction
는 association to the right를 쓴다 // 오른쪽결합,right_association?
λx1x2…xn . f(x1, …, xn)
denotes
λx1.(λx2.(…(λxn.f(x1, x2, …, xn))…))
그러면 위에 정의된 F는denotes
λx1.(λx2.(…(λxn.f(x1, x2, …, xn))…))
F = λxy.f(x, y)
이고, 저 위에 식 (F x)y = Fx y = f(x, y) 이것은 다음과 같이 된다(λxy.f(x,y))xy = f(x,y)
n개의 arguments가 있다면, n번 적용해서(λx1…xn . f(x1, …, xn))x1 … xn = f(x1, …, xn)
벡터 notation을 써서 더 편하게 적으면$\displaystyle (\lambda\vec{x}.f[\vec{x}])\vec{x}=f[\vec{x}]$
더 일반적으로$\displaystyle (\lambda \vec{x}.f[\vec{x}])\vec{N} = f[\vec{N}]$
}Up: 반복,iteration 적용,application
} // iteration of application iteration of application lambda calculus ? // iterated application iterated.application lambda.calculus
} // iteration of application iteration of application lambda calculus ? // iterated application iterated.application lambda.calculus
부분적용,partial_application =부분적용,partial_application =,partial_application 부분적용 partial_application
{
부분적용 ? - 이 가장 적당할 듯?
partial application
AKA partial function application (we)
{
부분적용 ? - 이 가장 적당할 듯?
partial application
AKA partial function application (we)
partial_application
= https://en.wiktionary.org/wiki/partial_application
= https://en.wiktionary.org/wiki/partial_application
" The process of fixing a number of 아규먼트,arguments to a 펑션,function, producing another function of smaller arity. "
https://en.wikipedia.org/wiki/Partial_application} // 부분적용
} // 적용
Sub:
application_software .... 이 위키에선 저거랑 구분이 무의미.. (ie 페이지를 나눌 필요가 없을 듯)
application_framework ... isa 프레임워크,framework
application_software .... 이 위키에선 저거랑 구분이 무의미.. (ie 페이지를 나눌 필요가 없을 듯)
application_framework ... isa 프레임워크,framework