폐포,pyepo

(생물학, 의학)

동물,animal의 호흡계통 Ndict:호흡계통 > 호흡기 Ndict:호흡기 > 폐 허파 lung ... 에 있는... 아주 작은 air sacs
aka 허파꽈리
영어로 alveolus (= alveola) / pl. alveoli
(또는 pulmonary(adj. 폐의, 허파의)로 수식하여 pulmonary alveolus / pulmonary alveoli)
따라서 Ndict:허파꽈리 Ggl:허파꽈리로 검색하면 closure가 안 나오는.
관련표현들
폐포구조(alveolar structure)

https://ko.wikipedia.org/wiki/폐포

(수학, esp 위상수학,topology)

closure
의 번역.
폐포,closure =폐포,closure =,closure .
{

WpEn:Closure_(topology)
= https://en.wikipedia.org/wiki/Closure_(topology)
= https://en.wikipedia.org/wiki/Closure_(topology)
{
(TOC전까지 인용)
"In topology, the closure of a subset $\displaystyle S$ of points in a topological space consists of
all pointsWpEn:Topology_glossary#P in $\displaystyle S$ together with
all limit pointsWpEn:Limit_points ....극한점,limit_point of $\displaystyle S.$

The closure of $\displaystyle S$ may equivalently be defined as the unionWpEn:Union_(set_theory) of
$\displaystyle S$ and
its boundaryWpEn:Boundary_(topology),
and also as
the intersectionWpEn:Intersection_(set_theory) of all closed sets containing $\displaystyle S.$

Intuitively, the closure can be thought of as all the points that are either in $\displaystyle S$ or "very near" S.
A point which is in the closure of $\displaystyle S$ is a point of closureWpEn:Adherent_point of $\displaystyle S.$ // WtEn:adherent_point Ndict:adherent point Ggl:adherent point ...

The notion of closure is in many ways dualWpEn:Duality_(mathematics)... 쌍대,dual 쌍대성,duality to the notion of interiorWpEn:Interior_(topology).
}

WpKo:폐포_(위상수학) = https://ko.wikipedia.org/wiki/폐포_(위상수학)
"주어진 위상공간,topological_space부분집합,subset을 포함하는 가장 작은 닫힌집합,closed_set이다. 이건 그 부분집합의 원소와 극한점,limit_point으로 구성된다. ..."

MKL
point_of_closure ... WtEn:point_of_closure =,point_of_closure .
pagename closure_point ? WtEn:closure_point WpEn:Closure_point Ggl:closure point

KmsK:폐포 - 관련표현 15개 정도
}