항등원,identity_element

Difference between r1.9 and the current

@@ -16,12 +16,16 @@
Ndict:항등원

= Sub =
[[additive_identity]] =,additive_identity . additive_identity
[[덧셈항등원,additive_identity]] =덧셈항등원,additive_identity =,additive_identity . 덧셈항등원 additive_identity
덧셈항등원 ...으로 하게 될 듯
[[덧셈,addition]]
[[multiplicative_identity]] =,multiplicative_identity . multiplicative_identity
[[곱셈항등원,multiplicative_identity]] =곱셈항등원,multiplicative_identity =,multiplicative_identity . 곱셈항등원 multiplicative_identity
곱셈항등원
[[곱셈,multiplication]]
벡터 ${\bf v}$ 에 대해 $1{\bf v} = \mathbf{v}$
[[항등행렬,identity_matrix]] - [[행렬곱셈,matrix_multiplication]]에서.
 
[[항등행렬,identity_matrix]]

= AKA =
[[단위원,unit_element]]
@@ -35,6 +39,11 @@

Rel [[유니터리,unitary]]

= Cmp 역원 =
[[역원,inverse_element]]
 
Namu:항등원과%20역원
----
Up:
[[아이덴티티,identity]] - [[항등성,identity]]


identity element
항등원





Sub

덧셈항등원,additive_identity =덧셈항등원,additive_identity =,additive_identity . 덧셈항등원 additive_identity
덧셈항등원 ...으로 하게 될 듯
덧셈,addition
곱셈항등원,multiplicative_identity =곱셈항등원,multiplicative_identity =,multiplicative_identity . 곱셈항등원 multiplicative_identity
곱셈항등원
곱셈,multiplication
벡터 $\displaystyle {\bf v}$ 에 대해 $\displaystyle 1{\bf v} = \mathbf{v}$
항등행렬,identity_matrix - 행렬곱셈,matrix_multiplication에서.

항등행렬,identity_matrix

AKA

단위원,unit_element
neutral_element
번역은 중립원,neutral_element ? =,neutral_element . neutral_element
(src: see VG)
Up: 단위,unit neutrality(번역? Ndict:neutrality )


wikiadmin

page name 항등원 via kms.

KmsE:identity element
{2023-11-14 "identity element 항등원, 단위원" }