확률변수,RV

확률변수,RV (rev. 1.10)

Definition of RV

A RV $\displaystyle X$ is a real-valued function of the experimental outcome.
$\displaystyle X:\mathbb{\Omega}\to\mathbb{R}$
여기서
$\displaystyle \mathbb{\Omega}$ = VG:표본공간,sample_space

Discrete RV (DRV)

A RV $\displaystyle X$ is discrete if its range is finite or countably infinite.
여기서, range $\displaystyle r(X)=\left{x\middle|\exists\omega\in\mathbb{\Omega}\textrm{ such that }X(\omega)=x\right}$
즉 sample $\displaystyle \omega$$\displaystyle x$ 라는 값으로 대응시키는?
그런 함수가 $\displaystyle X$ 이고 그것을 독립변수(or 정의역)로 하는 대응관계가 range r? 조건제시법 이해가 잘...

ex. two fair coin tosses
X = # of heads
Ω = {HH, HT, TH, TT}
X(HH) = 2
X(TT) = 0
r(X) = {0, 1, 2}

ex. sampling a number ω from [-1,1]
$\displaystyle X(\omega)=\begin{cases}1,&\textrm{ if }\omega>0\\0,&\textrm{ if }\omega=0\\-1,&\textrm{ if }\omega<0\end{cases}$


Probability mass function (PMF)

The PMF $\displaystyle p_X(x)$ of a DRV $\displaystyle X$ is defined as:
$\displaystyle p_X(x)=P(X=x)=P\left(\left{\omega\in\mathbb{\Omega}\middle|X(\omega)=x\right}\right)$

위의 동전던지기를 예로 들면
$\displaystyle p_X(x)=$
¼ if x=0 TT
½ if x=1 HT TH
¼ if x=2 HH

Mean or expectation

평균 or 기대값
$\displaystyle E[X]=\sum_x x\cdot P_X(x)$

위 동전던지기를 예로 들면 앞면이 나오는 횟수의 기대값은
E[X]= 0·¼ + 1·½ + 2·¼ = 1

Variance

분산
$\displaystyle V[X]=E[(X-E[X])^2]=\sum_x(x-E[X])^2P_X(x)$

Properties 특징
i) $\displaystyle E[aX+b]=aE[X]+b$
ii) $\displaystyle {\rm Var}[aX+b]=a^2{\rm Var}(X)$

Conditioning RV on event

Given an event $\displaystyle A$ with $\displaystyle P(A)>0,$ the conditional PMF $\displaystyle P_{X|A}$ of a DRV $\displaystyle X$ is defined as
$\displaystyle P_{X|A}(x)=P(X=x|A)=\frac{P(\left{X=x\right}\cap A)}{P(A)}$

Conditioning X on Y:
$\displaystyle P_{X|Y}(x|y)=P(X=x|Y=y)$
$\displaystyle =\frac{P(X=x,Y=y)}{P(Y=y)}$
$\displaystyle =\frac{P_{X,Y}(x,y)}{P_Y(y)}$

$\displaystyle =P(\{X=x\}\cap\{Y=y\})$
$\displaystyle =P(\{\omega\in\mathbb{\Omega}|X(\omega)=x\textrm{ and }Y(\omega)=y\})$

Conditional expectation

$\displaystyle E[X|A]=\sum_x x\cdot P_{X|A}(x)$

Joint PMF of two DRVs

X, Y: DRVs
$\displaystyle P_{X,Y}(x,y)=P(X=x,Y=y)$

Independence

Two DRVs $\displaystyle X$ and $\displaystyle Y$ are independent if
$\displaystyle P_{X,Y}(x,y)=P_X(x)P_Y(y)\;\;\;\forall x,y$

Continuous RV (CRV)

A RV $\displaystyle X$ is continuous if there exists a non-negative function $\displaystyle f_X()$ such that
$\displaystyle P(X\in B)=\int_B f_X(x)dx,\;\;\forall B\subset\mathbb{R}$
interval B가 $\displaystyle B=[a,b]$ 라면
$\displaystyle P(a\le X\le b)=\int_a^b f_X(x)dx$

페이지: 연속확률변수,continuous_RV

DRV and CRV

DRV CRV
PF PMF
$\displaystyle P_X(x)=P(X=x)$
PDF
$\displaystyle f_X(x),P(X\in B)=\int_B f_X(x)dx$
DF CDF
$\displaystyle F_X(k)=P(X\le k)=\sum_{x\le k} P_X(x)$
CDF
$\displaystyle F_X(x)=P(X\le x)=\int_{-\infty}^x f_X(t)dt$
Mean $\displaystyle E[X]=\sum_x xP_X(x)$ $\displaystyle E[X]=\int_{-\infty}^{\infty} xf_X(x)dx$
Var $\displaystyle V(X)=\sum(x-E[X])^2P_X(x)$ $\displaystyle V(X)=\int_{-\infty}^{\infty}(x-E[X])^2dx$

독립 and Joint

discrete에 independence가 있다면
continuous에 joint가 있다?

raised comma=⸴

Independence PX⸴Y(x,y)=PX(x)·PY(y) fX⸴Y(x,y)=fX(x)·fY(y), ∀x,y
Conditioning PX|Y(x|y)=PX⸴Y(x,y) / PY(y) fX|Y(x|y)=fX⸴Y(x,y) / fY(y)

(from [http]건대강의)