Difference between r1.23 and the current
@@ -1,4 +1,4 @@
''// 이 pagename은 [[수,number]]와 duplicated - 새로운 pagename?''
''// 이 pagename은 [[수,number]]와 duplicated - 새로운 pagename? RENAMETHISPAGE''
{KmsE:number
@@ -15,14 +15,48 @@
[[무리수,irrational_number]] I?
[[실수,real_number]] R
[[복소수,complex_number]] C
}
KmsE:case
KmsK:경우
[[실수,real_number]] R
[[복소수,complex_number]] C
[[palindromic_number]] =,palindromic_number . palindromic_number
{
https://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
WtEn:palindromic_number
https://ko.wikipedia.org/wiki/대칭수
WpEn:Palindromic_number
https://ja.wikipedia.org/wiki/回文数
}
[[Lychrel_number]] =,Lychrel_number . Lychrel_number
{
https://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
WtEn:Lychrel_number
https://en.wikipedia.org/wiki/Lychrel_number
}
etc[[기수,cardinal_number]] =,cardinal_number . cardinal_number { WtEn:cardinal_number Ndict:"cardinal number" "cardinal number"}
[[서수,ordinal_number]] or [[순서수,ordinal_number]] =,ordinal_number . ordinal_number { WtEn:ordinal_number Ndict:"ordinal number" "ordinal number"
[[무차원수,dimensionless_number]] =무차원수,dimensionless_number =,dimensionless_number 무차원수 dimensionless_number
{
[[https://terms.naver.com/entry.naver?docId=1095134&cid=40942&categoryId=32206]]
cf. [[dimensionless_quantity]] - curr at [[양,quantity]]
WtEn:dimensionless_number
Up: [[무차원,dimensionless]] or [[dimensionlessness]](curr at [[양,quantity]]) [[수,number]]
}
[[기수,cardinal_number]] =,cardinal_number . cardinal_number
{ WtEn:cardinal_number Ndict:"cardinal number" "cardinal number"}
[[서수,ordinal_number]] or [[순서수,ordinal_number]] =,ordinal_number . ordinal_number
{
WtEn:ordinal_number Ndict:"ordinal number" "ordinal number"
Rel [[순서,order]]}
}
Cmp
[[무한소,infinitesimal]]
} // 수 number
----KmsE:case
KmsK:경우
수, number
Sub:
자연수,natural_number N
정수,integer Z
유리수,rational_number Q
무리수,irrational_number I?
실수,real_number R
복소수,complex_number C
palindromic_number =,palindromic_number . palindromic_number
자연수,natural_number N
정수,integer Z
유리수,rational_number Q
무리수,irrational_number I?
실수,real_number R
복소수,complex_number C
palindromic_number =,palindromic_number . palindromic_number
{
https://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
palindromic_number
https://ko.wikipedia.org/wiki/대칭수
Palindromic_number
https://ja.wikipedia.org/wiki/回文数
}
Lychrel_number =,Lychrel_number . Lychrel_numberhttps://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
palindromic_number
https://ko.wikipedia.org/wiki/대칭수
Palindromic_number
https://ja.wikipedia.org/wiki/回文数
}
{
https://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
Lychrel_number
https://en.wikipedia.org/wiki/Lychrel_number
}
etchttps://en.wikipedia.org/wiki/Numerical_digit#Palindromic_numbers_and_Lychrel_numbers
Lychrel_number
https://en.wikipedia.org/wiki/Lychrel_number
}
무차원수,dimensionless_number =무차원수,dimensionless_number =,dimensionless_number 무차원수 dimensionless_number
{
https://terms.naver.com/entry.naver?docId=1095134&cid=40942&categoryId=32206
{
https://terms.naver.com/entry.naver?docId=1095134&cid=40942&categoryId=32206
기수,cardinal_number =,cardinal_number . cardinal_number
서수,ordinal_number or 순서수,ordinal_number =,ordinal_number . ordinal_number
Cmp
무한소,infinitesimal
서수,ordinal_number or 순서수,ordinal_number =,ordinal_number . ordinal_number
Cmp
무한소,infinitesimal
} // 수 number
확률,probability을 계산하기 위해서는, 표본공간,sample_space과 각 사건,event 원소의 개수를 계산해야 함.
{
-> RENAMEPAGE to product_rule
곱법칙
곱의법칙
product_rule
(관심있는 그 사건(들)의 경우의 수) ÷ (모든 가능한 경우의 수)가 일어날(happen) 확률?
경우의 수의 기본 법칙은 곱의_법칙,rule_of_product.{
-> RENAMEPAGE to product_rule
곱법칙
곱의법칙
product_rule
(고딩) 풍산자에 나온 Tips ¶
경우의 수 문제를 풀다 보면, 두 경우를 더해야 할지 곱해야 할지 헷갈릴 때가 많음.
두 상황을 구분할 줄 알아야 함.
⑴ '완성된 상태'가 될 때까지 곱하고, '완성된 상태'끼리를 더한다.
⑵ 경우를 분석해 '또는'일 땐 더하고 '그리고'일 땐 곱한다.
⑶ 경우를 분석해 '각각에 대하여'일 땐 곱한다.
⑷ '수형도'를 이용하면 곱하는 상황을 명확하게 포착 가능.
두 상황을 구분할 줄 알아야 함.
⑴ '완성된 상태'가 될 때까지 곱하고, '완성된 상태'끼리를 더한다.
⑵ 경우를 분석해 '또는'일 땐 더하고 '그리고'일 땐 곱한다.
⑶ 경우를 분석해 '각각에 대하여'일 땐 곱한다.
⑷ '수형도'를 이용하면 곱하는 상황을 명확하게 포착 가능.
Sub:
https://en.wiktionary.org/wiki/bit_numbering x 2023-08-25
counter
}
}
집합,set 원소,element/member counting/개수 관련임.
Cardinal_number
= https://simple.wikipedia.org/wiki/Cardinal_number
기수_(수학)
= https://ko.wikipedia.org/wiki/기수_(수학)
Cardinal_number
= https://en.wikipedia.org/wiki/Cardinal_number
...
cardinal number
cardinal number
cardinal number
ordinal_number - 서수, 순서수,Cardinal_number
= https://simple.wikipedia.org/wiki/Cardinal_number
기수_(수학)
= https://ko.wikipedia.org/wiki/기수_(수학)
Cardinal_number
= https://en.wikipedia.org/wiki/Cardinal_number
...
cardinal number
cardinal number
cardinal number
순서,order 관련임.
https://mathworld.wolfram.com/OrdinalNumber.html
순서수
Ordinal_number
Ordinal_number
... ordinal number ordinal number
cardinal_vs_ordinalhttps://mathworld.wolfram.com/OrdinalNumber.html
순서수
Ordinal_number
Ordinal_number
... ordinal number ordinal number
transfinite_number =,transfinite_number =,transfinite_number . transfinite_number
rel. ordinal_number
https://mathworld.wolfram.com/TransfiniteNumber.html
Transfinite_number
... transfinite number transfinite number
rel.https://mathworld.wolfram.com/TransfiniteNumber.html
Transfinite_number
... transfinite number transfinite number
counting
MV TO VG: 수,number
}
}