Probability law P라는 것은, ?를 정의역으로 하는 함수
joint_probability와 관련.
}
복수의 확률 변수에 대해서 그들의 동시 발생을 확률적으로 나타낸 양.
$\displaystyle P[A\cap B]=P[B|A]P[A]=P[A|B]P[B]$
조건부확률,conditional_probability을 써야 표현됨.
}
$\displaystyle P:?\to[0,1]$
?가 무엇인지 확실히사건,event?
Sub:사건,event
결과,outcome
분할,partition
전확률,total_probability (전확률정리)
베이즈_정리,Bayes_s_theorem
조건부확률,conditional_probability
{결과,outcome
분할,partition
전확률,total_probability (전확률정리)
베이즈_정리,Bayes_s_theorem
조건부확률,conditional_probability
joint_probability와 관련.
}
joint_probability 동시확률? 결합확률?
{복수의 확률 변수에 대해서 그들의 동시 발생을 확률적으로 나타낸 양.
$\displaystyle P[A\cap B]=P[B|A]P[A]=P[A|B]P[B]$
조건부확률,conditional_probability을 써야 표현됨.
}
Probability axioms ¶
$\displaystyle P(A)\ge 0$ | nonnegativity |
$\displaystyle P(A\cup B)=P(A)+P(B)\textrm{ for }A\cap B=\not\bigcirc$ | countable additivity. (![]() |
$\displaystyle P(\Omega)=1$ | normalization? |
Total probability theorem ¶
$\displaystyle A_1,\cdots,A_n$ : partition of Ω
$\displaystyle P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+\cdots+P(A_n)P(B|A_n)$
전확률정리,total_probability_theorem
$\displaystyle P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+\cdots+P(A_n)P(B|A_n)$
$\displaystyle =P\left(\bigcup_{i=1}^{n}(B\cap A_i)\right)$
$\displaystyle =P(B\cap A_1)+\cdots+P(B\cap A_n)$
$\displaystyle =P(B\cap A_1)+\cdots+P(B\cap A_n)$

Bayes' theorem ¶
$\displaystyle A_1,\cdots,A_n$ : partition of Ω
베이즈_정리,Bayes_theorem
with $\displaystyle P(A_i)>0\;\;\forall i$
$\displaystyle P[A_i|B]$$\displaystyle =\frac{P[A_i\cap B]}{P[B]}$
$\displaystyle =\frac{P[A_i]\cdot P[B|A_i]}{P[A_1]\cdot P[B|A_1]+\cdots+P[A_n]\cdot P[B|A_n]}$
베이즈_정리,Bayes_s_theorem$\displaystyle =\frac{P[A_i]\cdot P[B|A_i]}{P[A_1]\cdot P[B|A_1]+\cdots+P[A_n]\cdot P[B|A_n]}$

ex. radar detection ¶
A = {aircraft present, 비행기 나타남}
B = {alarm, 경보 울림}
P(A)=0.05
P(B|A)=0.99 // 비행가기 나타나면 경보 울릴 확률이 0.99
Q: 경보가 울렸을 때 실제로 비행기가 존재할 확률?
P(A|B)
B = {alarm, 경보 울림}
P(A)=0.05
P(B|A)=0.99 // 비행가기 나타나면 경보 울릴 확률이 0.99
이것만 보면 굉장히 정확해 보인다.
P(B|AC)=0.1 // 비행기가 없는데 경보 울릴 확률은 0.1Q: 경보가 울렸을 때 실제로 비행기가 존재할 확률?
P(A|B)
$\displaystyle =\frac{P(A\cap B)}{P(B)}$
$\displaystyle =\frac{P(A)P(B|A)}{P(A)P(B|A)+P(A^c)P(B|A^c)}$
$\displaystyle =\frac{0.05\times 0.99}{0.05\times 0.99+0.95\times 0.1} \simeq 0.3426$
$\displaystyle =\frac{P(A)P(B|A)}{P(A)P(B|A)+P(A^c)P(B|A^c)}$
$\displaystyle =\frac{0.05\times 0.99}{0.05\times 0.99+0.95\times 0.1} \simeq 0.3426$
...(계속?) 확률 용어
확률실험,random_experiment
{
실험을 하면 결과(result)로 결과,outcome가 나온다.
가능한 모든 결과의 집합: 표본공간,sample_space
확률실험,random_experiment
{
실험을 하면 결과(result)로 결과,outcome가 나온다.
가능한 모든 결과의 집합: 표본공간,sample_space

{
표기: $\displaystyle {}_{n}\mathrm{C}_{r}= \binom{n}{r}$
뽑기만 하고 순서는 중요치 않다.
$\displaystyle {}_n\mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$
}
확률의 정리들 (easy)
- $\displaystyle P(A^C)=1-P(A)$
- $\displaystyle A\subset B \Rightarrow P(A)\le P(B)$
- $\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)$
- $\displaystyle P(A\cup B)\le P(A)+P(B)$
- $\displaystyle P(A\cap B)=P(A)P(B|A)=P(B)P(A|B)$
- $\displaystyle P(B)=P(A\cap B)+P(A^C\cap B)=P(A)P(B|A)+P(A^C)P(B|A^C)$