change of variables
one-dimensional(single variable?) calculus에서는
$\displaystyle x=g(u)$ and $\displaystyle a=g(c),\; b=g(d)$ 인 조건 하에서, 적분식을 이렇게 변환함:
( $\displaystyle dx=g'(u)du$ )
$\displaystyle x=g(u)$ and $\displaystyle a=g(c),\; b=g(d)$ 인 조건 하에서, 적분식을 이렇게 변환함:
( $\displaystyle dx=g'(u)du$ )
$\displaystyle \int_a^b f(x)\,dx = \int_c^d f(g(u))g'(u)\,du$
$\displaystyle \int_a^b f(x)\,dx = \int_c^d f(x(u)) \,\frac{dx}{du}\, du$
그렇다면 double/triple integral에선?$\displaystyle \int_a^b f(x)\,dx = \int_c^d f(x(u)) \,\frac{dx}{du}\, du$
5m
C1 transformation 소개
C^1 transformation C^1 transformation C^1 transformation
pagename tbd; C^1_transformation or C1_transformation ?
C1 transformation 소개
C^1 transformation C^1 transformation C^1 transformation
pagename tbd; C^1_transformation or C1_transformation ?
MKL
Jacobian .... 야코비안,Jacobian / 야코비안,Jacobian
{
8:10
(Def.) The Jacobian of the transformation $\displaystyle T$ given by $\displaystyle x=g(u,v)$ and $\displaystyle y=h(u,v)$ is
Jacobian .... 야코비안,Jacobian / 야코비안,Jacobian
{
8:10
(Def.) The Jacobian of the transformation $\displaystyle T$ given by $\displaystyle x=g(u,v)$ and $\displaystyle y=h(u,v)$ is
$\displaystyle \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{vmatrix} = {\partial x\over\partial u}{\partial y\over\partial v} - {\partial x\over\partial v}{\partial y\over\partial u}$
(Stewart)"change of variables 변수변환, 변수바꿈" via change of variable
// change of variables ... change of variables
// change of variables ... change of variables