경희대 박종도 ¶
Approximation to $\displaystyle y=f(x)$ near $\displaystyle a$
The tangent plane to $\displaystyle z=f(x,y)$ at $\displaystyle (a,b,f(a,b))$ is
$\displaystyle f(x)\approx f(a) + f'(a)(x-a)$
$\displaystyle f(a)$ 는 쉽게 계산 가능.
: the linear approximation of $\displaystyle f$ at $\displaystyle a.$
$\displaystyle L(x) = f(a) + f'(a)(x-a)$- $\displaystyle L(a) = f(a)$
- $\displaystyle L(x) \approx f(x)$ when $\displaystyle x$ is near $\displaystyle a$ (x가 a 근방에선 값이 비슷하다)
The tangent plane to $\displaystyle z=f(x,y)$ at $\displaystyle (a,b,f(a,b))$ is
$\displaystyle z=f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
where $\displaystyle f_x$ and $\displaystyle f_y$ are continuous.Linearization:
$\displaystyle L(x,y) := f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
Linear approximation or tangent plane approximation:$\displaystyle f(x,y)\approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$