Difference between r1.2 and the current
@@ -12,16 +12,67 @@
----
Sub:
극
[[극좌표계,polar_coordinate_system]]
[[VG:극좌표계,polar_coordinate_system]]
rectangular ////CMP
orthogonal ///이게 더 넓은?
cartesian coordinate system / rectangular coordinate system ....////CMP
직각 ?
Ggl:"cartesian coordinate system"
Ggl:"rectangular coordinate system"
orthogonal coordinate system ....///이게 더 넓은?
직교
Ggl:"orthogonal coordinate system"
cylindrical coordinate system
Ggl:"cylindrical coordinate system"
spherical coordinate system
Ggl:"spherical coordinate system"
곡선좌표계,curvilinear_coordinates_system or
곡선좌표계,curvilinear_coordinate_system ... curr at [[곡선좌표,curvilinear_coordinate]]
<<tableofcontents>>
= 다음 셋이 특히 3D vector calculus에서 중요 =
[[벡터미적분,vector_calculus]] - [[VG:벡터미적분,vector_calculus]]
|| ||cartesian ||cylindrical ||spherical ||
||좌표변수 ||$x,y,z$ ||$\rho,\phi,z$ ||$r,\theta,\phi$ ||
||좌표의 범위 ||$\begin{align}-\infty\lt & x\lt\infty\\-\infty\lt & y\lt\infty\\-\infty\lt & z\lt\infty\end{align}$ ||$\begin{align}0\le&\rho\lt\infty\\0\le&\phi\le 2\pi\\-\infty\lt&z\lt\infty\end{align}$ ||$\begin{align}0\le&r\lt\infty\\0\le&\theta\le\pi\\0\le&\phi\le 2\pi\end{align}$ ||
Rationale
$x, y, z\in\mathbb{R}$ 은 당연.
$0\le\rho,r\lt\infty$ : 반직선의 길이는 0 이상이므로 당연.
$0\le\phi\le 2\pi$ : 각도이므로 당연.
----
tmp videos en
To Master Physics, First Master The Rotating Coordinate System - YouTube
https://www.youtube.com/watch?v=pD9NxA1aV7E
24m
{
simple linear translation // [[병진운동,translational_motion]] - [[VG:병진운동,translational_motion]]
}
----
... KmsE:"coordinate system" KpsE:"coordinate system"
geometry
system
[[VG:좌표계,coordinate_system]]
좌표계
coordinate_system
coordinate system
coordinate_system
coordinate system
Topics:
축,axis
좌표,coordinate
위치,position
차원,dimension
튜플,tuple CHK n차원 유클리드_공간,Euclidean_space의 점,point의 좌표는 항상 n-tuple of 실수,real_number $\displaystyle \mathbb{R}^n$ ? 아닌 경우가 있다면 어떤?
축,axis
좌표,coordinate
위치,position
차원,dimension
튜플,tuple CHK n차원 유클리드_공간,Euclidean_space의 점,point의 좌표는 항상 n-tuple of 실수,real_number $\displaystyle \mathbb{R}^n$ ? 아닌 경우가 있다면 어떤?
Sub:
polar
cartesian coordinate system / rectangular coordinate system ....////CMP
orthogonal coordinate system ....///이게 더 넓은?
cylindrical coordinate system
spherical coordinate system
관성좌표계,inertial_coordinate_system
cartesian coordinate system / rectangular coordinate system ....////CMP
orthogonal coordinate system ....///이게 더 넓은?
cylindrical coordinate system
spherical coordinate system
관성좌표계,inertial_coordinate_system
곡선좌표계,curvilinear_coordinates_system or
곡선좌표계,curvilinear_coordinate_system ... curr at 곡선좌표,curvilinear_coordinate
곡선좌표계,curvilinear_coordinate_system ... curr at 곡선좌표,curvilinear_coordinate
1. 다음 셋이 특히 3D vector calculus에서 중요 ¶
cartesian | cylindrical | spherical | |
좌표변수 | $\displaystyle x,y,z$ | $\displaystyle \rho,\phi,z$ | $\displaystyle r,\theta,\phi$ |
좌표의 범위 | $\displaystyle \begin{align}-\infty\lt & x\lt\infty\\-\infty\lt & y\lt\infty\\-\infty\lt & z\lt\infty\end{align}$ | $\displaystyle \begin{align}0\le&\rho\lt\infty\\0\le&\phi\le 2\pi\\-\infty\lt&z\lt\infty\end{align}$ | $\displaystyle \begin{align}0\le&r\lt\infty\\0\le&\theta\le\pi\\0\le&\phi\le 2\pi\end{align}$ |
Rationale
$\displaystyle x, y, z\in\mathbb{R}$ 은 당연.
$\displaystyle 0\le\rho,r\lt\infty$ : 반직선의 길이는 0 이상이므로 당연.
$\displaystyle 0\le\phi\le 2\pi$ : 각도이므로 당연.
tmp videos en
To Master Physics, First Master The Rotating Coordinate System - YouTube
https://www.youtube.com/watch?v=pD9NxA1aV7E
24m
{
simple linear translation // 병진운동,translational_motion - 병진운동,translational_motion
https://www.youtube.com/watch?v=pD9NxA1aV7E
24m
{
simple linear translation // 병진운동,translational_motion - 병진운동,translational_motion
}
Up:
geometry
system
geometry
system