좌표계,coordinate_system

Difference between r1.8 and the current

@@ -35,6 +35,9 @@

[[관성좌표계,inertial_coordinate_system]]

곡선좌표계,curvilinear_coordinates_system or
곡선좌표계,curvilinear_coordinate_system ... curr at [[곡선좌표,curvilinear_coordinate]]
----
<<tableofcontents>>
= 다음 셋이 특히 3D vector calculus에서 중요 =


좌표계
coordinate_system
coordinate system

Topics:
축,axis
좌표,coordinate
위치,position
차원,dimension
튜플,tuple CHK n차원 유클리드_공간,Euclidean_space점,point의 좌표는 항상 n-tuple of 실수,real_number $\displaystyle \mathbb{R}^n$ ? 아닌 경우가 있다면 어떤?


Sub:

polar
cartesian coordinate system / rectangular coordinate system ....////CMP
orthogonal coordinate system ....///이게 더 넓은?
cylindrical coordinate system
spherical coordinate system
관성좌표계,inertial_coordinate_system

곡선좌표계,curvilinear_coordinates_system or
곡선좌표계,curvilinear_coordinate_system ... curr at 곡선좌표,curvilinear_coordinate



1. 다음 셋이 특히 3D vector calculus에서 중요



cartesian cylindrical spherical
좌표변수 $\displaystyle x,y,z$ $\displaystyle \rho,\phi,z$ $\displaystyle r,\theta,\phi$
좌표의 범위 $\displaystyle \begin{align}-\infty\lt & x\lt\infty\\-\infty\lt & y\lt\infty\\-\infty\lt & z\lt\infty\end{align}$ $\displaystyle \begin{align}0\le&\rho\lt\infty\\0\le&\phi\le 2\pi\\-\infty\lt&z\lt\infty\end{align}$ $\displaystyle \begin{align}0\le&r\lt\infty\\0\le&\theta\le\pi\\0\le&\phi\le 2\pi\end{align}$

Rationale
$\displaystyle x, y, z\in\mathbb{R}$ 은 당연.
$\displaystyle 0\le\rho,r\lt\infty$ : 반직선의 길이는 0 이상이므로 당연.
$\displaystyle 0\le\phi\le 2\pi$ : 각도이므로 당연.



tmp videos en

To Master Physics, First Master The Rotating Coordinate System - YouTube
https://www.youtube.com/watch?v=pD9NxA1aV7E
24m
{
simple linear translation // 병진운동,translational_motion - VG:병진운동,translational_motion

}




Up:
geometry
system