개체군동태,population_dynamics ¶
P(t): the total population at time t / 특정 시각에서의 개체수,population
$\displaystyle \frac{dP}{dt}\propto P$
population_growth =,population_growth =,population_growth . population_growth
{
population growth
Up: 개체수,population 성장,growth ?
}// population growth population growth
{
population growth
Up: 개체수,population 성장,growth ?
}// population growth population growth
방사성붕괴,radioactive_decay ¶
A(t): amount of substance remaining at time t
$\displaystyle \frac{dA}{dt}\propto A$
물질의 연대 측정법:
방사성 물질의 시간 t에서의 붕괴율(dy/dt)은 시간 t에서의 현존량(y)에 비례
$\displaystyle \frac{dy}{dt}=ky$
ex. 현재 Ra 100 mg 이 있다. t시간 이후 양은?$\displaystyle \frac{dy}{dt}=ky$
위 식을 변형하면
$\displaystyle \frac{dy}{ky}=dt$
$\displaystyle \frac{dy}{y}=kdt$
$\displaystyle \ln|y|=kt+C_1$
$\displaystyle y=e^{kt+C_1}=C_2e^{kt}$
$\displaystyle t=0,y=100,y=100e^{kt}$$\displaystyle \frac{dy}{ky}=dt$
$\displaystyle \frac{dy}{y}=kdt$
$\displaystyle \ln|y|=kt+C_1$
$\displaystyle y=e^{kt+C_1}=C_2e^{kt}$
Newton's law of cooling/warming ¶
뉴턴_냉각법칙
T(t): the temperature of a body at time t
Tm: the temperature of surrounding medium
Tm: the temperature of surrounding medium
$\displaystyle \frac{dT}{dt}\propto T-T_m$
or
$\displaystyle {dT\over dt}=k(T-T_m)$spreading of disease ¶
x(t): the number of people who have contacted the disease at time t
y(t): the number of people who have not yet been exposed to the disease at time t
assumption: the number of interactions is jointly proportional to x(t) and y(t)
y(t): the number of people who have not yet been exposed to the disease at time t
assumption: the number of interactions is jointly proportional to x(t) and y(t)
$\displaystyle \frac{dx}{dt}\propto xy$
or
$\displaystyle \frac{dx}{dt}=kxy$falling bodies and air resistance ¶
$\displaystyle m\frac{dv}{dt}=mg-kv^2$
$\displaystyle m\frac{d^2s}{dt^2}+k\left(\frac{ds}{dt}\right)^2=mg$