전미분,total_derivative

이변수 함수
$\displaystyle u(x,y)=c$
전미분
$\displaystyle du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy$

3차원 공간에서 함수 $\displaystyle f$$\displaystyle f(x,y,z)$ 형태로 주어졌다면, 변수 $\displaystyle x,y,z$ 의 변화에 따른 $\displaystyle f$ 의 함수값의 변화 즉 전미분 $\displaystyle df$
$\displaystyle df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz$

변수 $\displaystyle n$ 개인 함수 $\displaystyle f=f(x_1,\cdots,x_n)$전미분
$\displaystyle df=\frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \cdots + \frac{\partial f}{\partial x_n}dx_n$

$\displaystyle u=f(x,y)$ 에서
변수 $\displaystyle x$$\displaystyle x$ 에서 $\displaystyle x+\Delta x$ 로,
변수 $\displaystyle y$$\displaystyle y$ 에서 $\displaystyle y+\Delta y$ 로 변하면,
함수값 $\displaystyle u$ 의 변화량 $\displaystyle du$ (전미분)은:
$\displaystyle du=f_x(x,y)dx+f_y(x,y)dy$

ex.
$\displaystyle f(x,y)=xy^2+\sin x$
$\displaystyle df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$
$\displaystyle =(y^2+\cos x)dx+2xydy$

ex.
$\displaystyle f(x,y)=3x^2-6xy$
$\displaystyle df=(6x-6y)dx+(-6x)dy$
참고로, 만약
$\displaystyle df=0$
이면
$\displaystyle f(x,y)=3x^2-6xy=C$
즉 상수값이라는 것이다. (중요)


이변수함수에서 $\displaystyle x\to x+\Delta x,\,y\to y+\Delta y$ 로 변할 때 $\displaystyle u$ 의 변화 $\displaystyle \Delta u$
$\displaystyle \Delta u=f(x+\Delta x,y+\Delta y)-f(x,y)$
$\displaystyle =f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)+f(x,y+\Delta y)-f(x,y)$
극한 $\displaystyle \Delta x\to 0,\,\Delta y \to 0$ 을 생각하면
$\displaystyle du=df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$

여기서 differential(전미분,total_differential) $\displaystyle df$ 는 네 독립변수 $\displaystyle x,y,dx,dy$ 에 대한 함수로 볼 수 있다.

Higher differentials $\displaystyle d^2f, d^3f, \cdots, d^nf$ 도 정의 가능.
$\displaystyle d^2f=d(df)=d\left(\frac{\partial f}{\partial x}dx\right)+d\left(\frac{\partial f}{\partial y}dy\right)$
$\displaystyle d$$\displaystyle \frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy$ 로 치환하면
$\displaystyle d^2f=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}dx\right)dx+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}dx\right)dy+\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}dy\right)dx+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}dy\right)dy$
$\displaystyle =\frac{\partial^2f}{\partial x^2}(dx)^2+2\frac{\partial^2f}{\partial x \partial y}dxdy+\frac{\partial^2 f}{\partial y^2}(dy)^2$
귀납(induction)에 의하면
$\displaystyle d^nf=\frac{\partial^n f}{\partial x^n}(dx)^n+\binom{n}{1}\frac{\partial^n f}{\partial x^{n-1}\partial y}(dx)^{n-1}dy+\cdots+\binom{n}{r}\frac{\partial^n f}{\partial x^{n-r}\partial y^r}(dx)^{n-r}(dy)^r+\cdots+\frac{\partial^n f}{\partial y^n}(dy)^n$

2차원일 경우 증명

$\displaystyle z=f(x,y)$ 가 주어졌다고 가정.
$\displaystyle z$전미분$\displaystyle x,y$ 가 변할 때 $\displaystyle z$ 의 변화량이므로,
$\displaystyle dz=f(x+dx,y+dy)-f(x,y)$
여기서 우변에 같은 걸 빼고 더한 뒤 정리한다.
$\displaystyle dz=f(x+dx,y+dy)-f(x,y+dy)+f(x,y+dy)-f(x,y)$
$\displaystyle =[f(x+dx,y+dy)-f(x,y+dy)]+[f(x,y+dy)-f(x,y)]$
$\displaystyle =\frac{f(x+dx,y+dy)-f(x,y+dy)}{dx}dx+\frac{f(x,y+dy)-f(x,y)}{dy}dy$
$\displaystyle =\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$
$\displaystyle =\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$

Compare: 전미분,total_differential (MERGE?)